.. _usage: Basic Usage =========== This section guides you through using the `CopulaFurtif` pipeline to create, manipulate, and diagnose bivariate copulas. 🧱 Creating Copulas ------------------- All copulas are accessible via the `CopulaFactory`: .. code-block:: python from CopulaFurtif.core.copulas.domain.factories.copula_factory import CopulaFactory copula = CopulaFactory.create("gaussian") print(copula.name) # Gaussian Copula Available copulas: `gaussian`, `student`, `clayton`, `frank`, `joe`, `gumbel`, `amh`, `tawn3`, `galambos`, `plackett`, `fgm`, etc. 📊 Input Data ------------- The pipeline generally expects: - **Raw data**: original data for Kendall's tau (`[[X1, Y1], [X2, Y2], ...]`) - **Pseudo-observations**: data transformed to uniform scale `u, v ∈ (0,1)` using marginals Generate pseudo-observations: .. code-block:: python from CopulaFurtif.core.copulas.domain.estimation.utils import pseudo_obs u, v = pseudo_obs(data) # data = [[X1, Y1], [X2, Y2], ...] 📈 Accessing Basic Methods -------------------------- .. code-block:: python copula.parameters = [0.5] # or [rho, nu] for Student print(copula.get_cdf(0.4, 0.8)) print(copula.get_pdf(0.4, 0.8)) print(copula.kendall_tau()) samples = copula.sample(100) 🔬 Diagnostics -------------- .. code-block:: python from CopulaFurtif.core.copulas.application.services.diagnostics_service import DiagnosticService diag = DiagnosticService() scores = diag.evaluate(data, copula) print(scores) Result: a dict with `LogLik`, `AIC`, `BIC`, `Kendall Tau Error`, etc. 📌 Coming Soon: Fitting & Visualization