.. _visualization: Visualization ============= CopulaFurtif provides several tools to visualize the quality of copula fitting. 🌡️ Residual Heatmap (Empirical - Model) --------------------------------------- .. code-block:: python from CopulaFurtif.core.copulas.infrastructure.visualization.copula_viz_adapter import plot_residual_heatmap u, v = pseudo_obs(data) plot_residual_heatmap(copula, u, v, bins=50) This produces a map of differences between the empirical CDF and the model CDF. .. .. image:: ../_static/heatmap_example.png .. :align: center .. :scale: 60 % 📈 Conditional Curves --------------------- .. code-block:: python from CopulaFurtif.core.copulas.infrastructure.visualization.copula_viz_adapter import plot_conditional_curves plot_conditional_curves(copula, fixed_values=[0.25, 0.5, 0.75], kind="u_given_v") .. .. image:: ../_static/conditional_curves.png .. :align: center .. :scale: 60 % 📊 Copula Benchmarking ----------------------- .. code-block:: python from CopulaFurtif.core.copulas.infrastructure.visualization.copula_viz_adapter import plot_copula_comparison copulas = [CopulaFactory.create("gaussian"), CopulaFactory.create("gumbel")] for c in copulas: FitCopulaUseCase().fit_cmle(data, c) plot_copula_comparison(copulas, u, v) .. .. image:: ../_static/comparison.png .. :align: center .. :scale: 60 % 🎯 Integrated Visual Summary ---------------------------- .. code-block:: python from CopulaFurtif.core.copulas.infrastructure.visualization.copula_viz_adapter import full_copula_summary full_copula_summary(copula, data, bins=40)