Basic Usageο
This section guides you through using the CopulaFurtif pipeline to create, manipulate, and diagnose bivariate copulas.
π§± Creating Copulasο
All copulas are accessible via the CopulaFactory:
from CopulaFurtif.core.copulas.domain.factories.copula_factory import CopulaFactory
copula = CopulaFactory.create("gaussian")
print(copula.name) # Gaussian Copula
Available copulas: gaussian, student, clayton, frank, joe, gumbel, amh, tawn3, galambos, plackett, fgm, etc.
π Input Dataο
The pipeline generally expects:
Raw data: original data for Kendallβs tau ([[X1, Y1], [X2, Y2], β¦])
Pseudo-observations: data transformed to uniform scale u, v β (0,1) using marginals
Generate pseudo-observations:
from CopulaFurtif.core.copulas.domain.estimation.utils import pseudo_obs
u, v = pseudo_obs(data) # data = [[X1, Y1], [X2, Y2], ...]
π Accessing Basic Methodsο
copula.parameters = [0.5] # or [rho, nu] for Student
print(copula.get_cdf(0.4, 0.8))
print(copula.get_pdf(0.4, 0.8))
print(copula.kendall_tau())
samples = copula.sample(100)
π¬ Diagnosticsο
from CopulaFurtif.core.copulas.application.services.diagnostics_service import DiagnosticService
diag = DiagnosticService()
scores = diag.evaluate(data, copula)
print(scores)
Result: a dict with LogLik, AIC, BIC, Kendall Tau Error, etc.
π Coming Soon: Fitting & Visualization